Outlier Detection using Improved Genetic K-means
نویسنده
چکیده
The outlier detection problem in some cases is similar to the classification problem. For example, the main concern of clustering-based outlier detection algorithms is to find clusters and outliers, which are often regarded as noise that should be removed in order to make more reliable clustering. In this article, we present an algorithm that provides outlier detection and data clustering simultaneously. The algorithmimprovesthe estimation of centroids of the generative distribution during the process of clustering and outlier discovery. The proposed algorithm consists of two stages. The first stage consists of improved genetic k-means algorithm (IGK) process, while the second stage iteratively removes the vectors which are far from their cluster centroids. General Terms Data Mining.
منابع مشابه
Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملDetecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes
With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...
متن کاملImproved K-means Clustering Algorithm Based on Genetic Algorithm
Through comparison and analysis of clustering algorithms, this paper presents an improved Kmeans clustering algorithm. Using genetic algorithm to select the initial cluster centers, using Z-score to standardize data, and take a new method to evaluate cluster centers, all this reduce the affect of isolated points, and improve the accuracy of clustering. Experiments show that the algorithm to fin...
متن کاملRough K-means Outlier Factor Based on Entropy Computation
Many studies of outlier detection have been developed based on the cluster-based outlier detection approach, since it does not need any prior knowledge of the dataset. However, the previous studies only regard the outlier factor computation with respect to a single point or a small cluster, which reflects its deviates from a common cluster. Furthermore, all objects within outlier cluster are as...
متن کاملUnsupervised Clustering Approach for Network Anomaly Detection
This paper describes the advantages of using the anomaly detection approach over the misuse detection technique in detecting unknown network intrusions or attacks. It also investigates the performance of various clustering algorithms when applied to anomaly detection. Five different clustering algorithms: k-Means, improved k-Means, k-Medoids, EM clustering and distance-based outlier detection a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.6859 شماره
صفحات -
تاریخ انتشار 2011